Software Effort Estimation with Ridge Regression and Evolutionary Attribute Selection

نویسندگان

  • Efi Papatheocharous
  • Harris Papadopoulos
  • Andreas S. Andreou
چکیده

Software cost estimation is one of the prerequisite managerial activities carried out at the software development initiation stages and also repeated throughout the whole software life-cycle so that amendments to the total cost are made. In software cost estimation typically, a selection of project attributes is employed to produce effort estimations of the expected human resources to deliver a software product. However, choosing the appropriate project cost drivers in each case requires a lot of experience and knowledge on behalf of the project manager which can only be obtained through years of software engineering practice. A number of studies indicate that popular methods applied in the literature for software cost estimation, such as linear regression, are not robust enough and do not yield accurate predictions. Recently the dual variables Ridge Regression (RR) technique has been used for effort estimation yielding promising results. In this work we show that results may be further improved if an AI method is used to automatically select appropriate project cost drivers (inputs) for the technique. We propose a hybrid approach combining RR with a Genetic Algorithm, the latter evolving the subset of attributes for approximating effort more accurately. The proposed hybrid cost model has been applied on a widely known high-dimensional dataset of software project samples and the results obtained show that accuracy may be increased if redundant attributes are eliminated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of effort estimation accuracy in software projects using a feature selection approach

In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...

متن کامل

Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques

Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...

متن کامل

Experimental Evaluation of Algorithmic Effort Estimation Models using Projects Clustering

One of the most important aspects of software project management is the estimation of cost and time required for running information system. Therefore, software managers try to carry estimation based on behavior, properties, and project restrictions. Software cost estimation refers to the process of development requirement prediction of software system. Various kinds of effort estimation patter...

متن کامل

A Comparison between New Estimation and variable Selectiion method in Regression models by Using Simulation

In this paper some new methods whitch very recently have been introduced for parameter estimation and variable selection in regression models are reviewd. Furthermore , we simulate several models in order to evaluate the performance of these methods under diffrent situation. At last we compare the performance of these methods with that of the regular traditional variable selection methods such ...

متن کامل

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1012.5754  شماره 

صفحات  -

تاریخ انتشار 2010